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Abstract: Sensitive magnetic nucleic acid (NA) detection via frequency mixing magnetic detection
(FMMD) requires amplified NA samples for which a reliable temperature control is necessary. The
feasibility of recombinase polymerase amplification (RPA) was studied within a newly integrated
temperature-controlled sensor unit of a mobile FMMD based setup. It has been demonstrated that
the inherently generated heat of the low frequency (LF) excitation signal of FMMD can be utilized
and controlled by means of pulse width modulation (PWM). To test control performance in a point of
care (PoC) setting with changing ambient conditions, a steady state and dynamic response model
for the thermal behavior at the sample position of the sensor were developed. We confirmed that
in the sensor unit of the FMMD device, RPA performs similar as in a temperature-controlled water
bath. For narrow steady state temperature regions, a linear extrapolation suffices for estimation of the
sample position temperature, based on the temperature feedback sensor for PWM control. For any
other ambient conditions, we identified and validated a lumped parameter model (LPM) performing
with high estimation accuracy. We expect that the method can be used for NA amplification and
magnetic detection using FMMD in resource-limited settings.

Keywords: recombinase polymerase amplification; frequency mixing magnetic detection; thermal
lumped parameter model; magnetic nanoparticles; point of care testing

1. Introduction

Detection of pathogen contaminations at point of care (PoC), where the traditional
central labs are unavailable, is critical for controlling outbreaks and reducing the spread of
infectious diseases [1,2]. Among many developed PoC tests, nucleic acid amplification tests
have proven to allow precise identification of pathogens with high sensitivity and specificity
compared with other techniques [3,4]. However, integrating amplification methods and
detecting amplified material in the field remains challenging, particularly when developing
a robust, portable and user-friendly assay.

Frequency mixing magnetic detection (FMMD), paired with a portable magnetic reader,
offers an accurate and sensitive platform for various applications, particularly in PoC
testing [5]. This technology utilizes superparamagnetic nanoparticles functionalized with
specific ligands to bind target molecules, generating selective magnetic signals. This allows
the detection of various analytes, including antibiotics, toxins, antibodies and pathogens [6].
Compared to other detection methods, the detection of analytes using magnetic labels
offers the advantages of selective detection, independent of the sample matrix, which
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comes from the specific characteristics of superparamagnetic nanoparticles [7]. Moreover,
FMMD provides quantitative results for a wide concentration range [8], allowing for precise
measurement of analyte concentrations. In addition, it showed the feasibility of multiplex
detection of different magnetic nanoparticles [9,10]. Recently, we presented a new magnetic
particle assay, that was developed for the detection and quantification of amplified Brucella
DNA, highlighting the practical use of FMMD in nucleic acid detection [8]. The assay
showed a high sensitivity and specificity in detecting amplified DNA with less than 10 min
of detection time. However, the detected DNA was amplified by PCR which required a
laboratory-based thermal cycler that is not suitable for field testing.

To perform any kind of currently known nucleic acid (NA) amplification technique,
temperature regulation of the process is required for efficient amplification. The tempera-
ture has a critical impact on overall reaction performance, as the enzyme activity, primer an-
nealing, specificity and sensitivity can be influenced by temperature deviations [11,12]. The
temperature regulation is usually achieved by utilizing dedicated thermoregulators such as
commercial thermal cyclers. The detection of amplified products is mainly performed using
traditional techniques such as gel-electrophoresis for qualitative and semi-quantitative
analysis of band intensities or fluorescence-based detection methods like Real-Time (quan-
titative) PCR (qPCR) and digital PCR (dPCR) for quantitative analysis [13–15]. However,
in any of these methods, expensive laboratory devices are necessary, approaches are time-
consuming and highly trained personnel is required. In addition, these methods are not
suitable for resource-limited settings.

Isothermal amplification techniques have revolutionized molecular diagnostics by
enabling the detection of specific DNA or RNA sequences with high sensitivity and speci-
ficity in PoC scenarios [16,17]. Among these techniques, major attention has been paid to
Recombinase Polymerase Amplification (RPA) or Loop-Mediated Isothermal Amplification
(LAMP) and many more alternatives to Polymerase Chain Reaction (PCR) [18]. Isothermal
techniques offer the advantages of simplicity and speed [4,19]. In addition, they have a
constant low operating temperature to support the various enzymatic processes involved
in DNA or RNA amplification, which makes integration into a field-detection platform
feasible, without the need for expensive sophisticated thermal cycling equipment. The
isothermal amplification is usually carried out using simple heating devices such as heat
block, water bath, chemical heating and battery powered instruments [20–22]. However,
additional readout and biosensor methods are required to quantify the amplified DNA,
such as fluorometric, colorimetric and electrochemical devices [23,24].

To improve the FMMD technique in terms of mobile nucleic acid testing, the integra-
tion of isothermal amplification methods can be a crucial advancement as it increases the
mobile capabilities and functionalities of the portable magnetic reader without the need
for any sample-preprocessing infrastructure. The magnetic reader sensor unit, henceforth
referred to as Measurement Head (MH), consists of a nested configuration of coils that
generates low- and high-frequency excitation signals, LF and HF excitation, respectively,
and picks up the sample’s magnetic response signal. The thermal energy in the MH is
mainly generated by the resistive heat of the low frequency excitation coil that is inherently
necessary for FMMD signal acquisition. We hypothesize that this thermal energy can be
utilized to drive various biological assays or isothermal amplification sample-pretreatment
in the field, if controlled properly. Combining isothermal amplification with FMMD allows
the selective magnetic detection and quantification of DNA in a single device without the
need of additional instrumentation for the amplification process.

To survey the practicability of this endeavor, we use a simple PWM control approach,
utilizing temperature feedback from the LF-coil surface and perform RPA at the sample
position of the MH by means of duty cycle control, and assess the basic performance from
the controller perspective and from the perspective of its utilization for RPA.

Achieving reliable RPA in a PoC setting is particularly challenging. While for steady
state temperatures, a linear regression model might suffice to predict the temperature of
the sample, the necessity to assess dynamic temperature behavior and larger temperature
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ranges needs an approach that is capable of transient temperature prediction for arbitrary
ambient conditions. Therefore, we suggest lumped parameter models (LPMs) that describe
the temperature behavior at relevant points in the MH for arbitrary ambient condition
inputs. Besides the analysis of any thermal influences on the biological pre-processing ca-
pabilities of the magnetic reader, this model may also play a role in technological reliability
advancements, minimizing temperature-dependent resistance fluctuation and potentially
leading to more accurate FMMD signal acquisition.

2. Materials and Methods
2.1. Reagents

TwistAmp® Liquid Basic kit (Product code: TALQBAS01) was obtained from TwistDx™
Ltd. (Maidenhead, UK). GeneRuler Ultra Low Range DNA Ladder (Product code: SM1213)
and DNA Gel Loading Dye (6×) (Product code: R061) were purchased from Thermo
Fisher Scientific™ (Langerwehe, Germany). ROTI® Prep PCR Purification (Product code:
8503.2) and Agarose standard (Product code: 3810.3) were obtained from Carl Roth GmbH
(Karlsruhe, Germany). RedSafe DNA stain (20,000×) (Product code: 21141) was obtained
from Hiss Diagnostics GmbH (Freiburg im Breisgau, Germany).

2.2. Frequency Mixing Magnetic Detection

Frequency Mixing Magnetic Detection is a technique used to measure the magnetic
response of superparamagnetic nanoparticles or of magnetic beads which exhibit nonlinear
magnetic properties by measuring the mixed harmonic distortions in the detected signal [5].
In FMMD, these “mixing” harmonics consist of the HF and the LF component of the two
distinct excitation fields that are applied to the sample. Besides the coils used for excitation
field generation, a detection coil and an oppositely wound reference coil are used for signal
collection. Depending on the magnetic particles’ magnetic moment response to the incident
excitation fields, the mixing harmonics change.

The applied LF peak excitation field was 16.4 mT at 63 Hz and the HF excitation
field applied was 1.34 mT at 40,545 Hz [25]. These field amplitudes and frequencies were
optimized for Synomag®-D (70 nm), product code 104-19-701 from Micromod GmbH,
Rostock, Germany. The peak current through the LF-coil was 240 mA, yielding a power
dissipation of approximately 2.4 W, whereas the HF-coil current of 20 mA led to just 7 mW
of heating power, 350-fold lower than the LF power. Thus, the LF excitation chain generates
enough heat to be used as a temperature control input, and the HF power is negligible.

2.3. Pulse Width Modulation Controller

A 2-point PWM feedback controller for LF-amplitude duty cycle adjustment and
therefore controlled heat supply was implemented in the Arduino microcontroller software
(version v2.20.2) of the magnetic reader. The feedback temperature sensor used for control
was a DS18B20 sensor from Maxim Integrated Products, Inc. (San Jose, CA, USA), mounted
on the LF-coil surface inside the measurement head. The suggested control algorithm
incorporates two distinct, freely selectable error ranges. A first, wider error range for
tuning the temperature in the desired interval and a second, narrower error range within
which the temperature is kept during the FMMD measurement process. This makes it
generally possible to heat up the amplification environment with maximum power fed to
the LF-coil, but then regulate the heat with, e.g., only half maximum power.

The conditional equivalent logic for the duty cycle regulation within these error ranges
based on the temperature difference between the measured output temperature and the set
desired temperature input value followed the scheme in Figure 1 below:

Here, εc denotes the allowed temperature error range during heat up and tuning
and εm denotes the allowed temperature error range during the FMMD measurement.
Tm is the measured temperature at the LF-coil surface and Tt is the set controller target
temperature. The output of this equivalent logic states the condition that determines if the
LF-amplitude is turned on or off with a first amplitude setting (Amplitude 1) or a second
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amplitude setting (Amplitude 2), different from the first one. Software-wise, this logic was
implemented into the Arduino microcontroller using multi-tasking programming with a
time-slicing scheduling technique to account for the wait time of the temperature sensor
and measurement readout.
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Figure 1. Equivalent logic for a PWM controller with differentially adjustable heating and measure-
ment LF amplitude and schematic of controlled temperature using this logic.

2.4. Recombinase Polymerase Amplification (RPA)

The RPA for positive control reactions was performed following the manufacturer’s
recommendation in the TwistAmp® Liquid Basic kit, with slight adjustments by reducing
the reagent quantities to create a total volume of 25 µL. In the RPA reaction, a master
mix was prepared containing 3.5 µL of oligo mix primers, 12.5 µL of 2× reaction buffer,
2.5 µL of 10× basic E-mix, 2.75 µL of dNTPs and 1.25 µL of 20× core reaction. After
mixing, 2 µL of MgOAc and 1 µL of positive control DNA were added to start the reaction.
The RPA reaction was carried out at desired incubation temperatures and time inside the
measurement head.

After the amplification, the RPA was purified using ROTI® Prep PCR Purification kit
through column centrifugation to remove reaction components. For the visualization of RPA
products, 10 µL of the purified amplicons was analyzed using agarose gel electrophoresis
on 2% agarose gel in 1× TBE buffer at 100 V for 1 h. The visualization was conducted with
the ChemiDoc™ XRS Imaging System (Bio-Rad Laboratories Co., Ltd., Hercules, CA, USA).

2.5. Lumped Parameter Model
2.5.1. Model Structure Design

The model structure was designed using a grey box approach. The following assump-
tions (logical derivations based on physical intuition or measurement) were made:

1. The LF power contributes significantly more to MH heating than the HF-coil power.
This assumption is based on the 350-fold difference in power dissipation described in
Section 2.2.

2. The ambient temperature influences the heating and cooling processes of the MH
(heat dissipation is influenced by the temperature difference between the system
under test and its surroundings—Newton’s law of cooling, Stefan–Boltzmann law).

3. From 1 and 2, it follows that the model has two inputs (ambient temperature and
average LF power).

4. Heat transfer is a non-integer order process (hence, Padé approximations in the
heating and cooling lanes).

5. The MH can store a certain amount of heat energy (it has a heat capacity, respectively)
denoted by Cvol .

6. At the sample position, the system obeys a transport delay term that describes the
time the heat needs to travel from the sensor to the sample position.
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The simulation was set up using MATLAB Simulink (version R2023b). As a numerical
method for solving the model equations, the auto-select Bogacki–Shampine solver was
used. For the “feedback position model”, a fixed step size (fundamental sample time) of
0.061 s for the system identification dataset and 1.688 s for the validation dataset was used.
Here, system identification is the model parameter estimation process for measured in- and
output data compared to the model output, such that the deviations between measured
system output and model output are minimized. System validation is a repetition of this
process for independently recorded different in- and output data and the confirmation
that the model captures the essential system dynamics. The total length of the validation
dataset was 21,111 s and the length of the identification dataset was 3042 s. Considering the
trade-off between simulation accuracy and computational effort for parameter estimation,
the difference in auto-selected fixed-step size was accepted. The model validity was
not influenced. The “sample position model” was solved using variable step sizes to
significantly reduce estimation time for initial delay time estimations. The identification
dataset for this model was recorded over 5720 s and the validation dataset was recorded
over 10,997 s. For each model identification and validation recording, different lengths of
averaged power input pulses were used.

2.5.2. Model Parameter Estimation (Model Parametrization)

The free model parameters (KLF, KAMB, Cvol , a1–d5) were estimated by solving a least
squares optimization problem. Its cost-function definition can be seen in Equation (1),
where yp is the predicted value and ym is the measured value.

J = min
n

∑
i=1

(
yp − ym

)2 (1)

This optimization problem was solved using the parameter estimator of the system
identification toolbox in MATLAB, which iteratively combines different parameters and
compares a measured dataset to the model output for each iterative set of parameters. This
process is repeated until a cost-function minimum is reached.

2.6. Model Performance Metrics

To compare the measured data to the simulated model output, the Normalized Root
Mean Square Error (NRMSE) was determined. Normalization can be performed with
respect to the mean of the measured response data or with respect to the range of data
points (ymax–ymin). Depending on whether the NRMSE is normalized with respect to the
mean or the range of the measured dataset, NRMSE is sometimes also called the coefficient
of variation (CV).

The latter was used in this study and the NRMSE was calculated according to
Equation (2).

NRMSE =

√
1
n ∑n

i=1

(
ymi

− ypi

)2

ymmax
− ymmin

(2)

with the number of measurements, n, the measured value ymi
and the predicted value ypi

.
The residual variance between the measured data and the simulated output for an

estimated set of model parameters is lower when the NRMSE value is small.
Furthermore, considering a predictor variable (number of inputs to the system) ad-

justed statistical metric, the standard Error of Estimate (SEE) was used in the linear/multi-
linear models. Closely related to the RMSE, it accounts for the degrees of freedom in
the system,

SEE =

√√√√√∑n
i=1

(
ymi

− ypi

)2

n − p
(3)
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with p being the predictor variable, accounting for the number of independent variables in
the system under test. Accordingly, for additional intuitive depiction, the % agreement was
calculated based on the adjusted R2 value.

3. Results and Discussion
3.1. Controller Performance

Before testing the feasibility of RPA in the MH, the temperature controller should
briefly be investigated in terms of its reliability in a test (lab) setting. While performing any
NA amplification as well as during FMMD signal acquisition, the sample to be amplified or
measured is inside the sample bore of the MH. Due to geometrical restrictions, sample and
temperature sensors cannot be installed simultaneously at the current stage. Hence, the
temperature sensor used for feedback control was mounted on the surface of the LF-coil in
the MH, a small distance apart from the center of the sample position. To visualize this, a
schematic of the MH, the temperature sensor and sample position, as well as the principle
of the power to temperature conversion can be seen in Figure 2.
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Because of distinct control and amplification locations, it is important to not only
characterize the controller and controllable temperature ranges at the position of the
feedback sensor, but especially to test the temperature control at the sample position that is
not directly controlled. The feedback sensor behavior was characterized for 10 different
feedback temperature settings (30, 37, 38, 39, 40, 41, 45, 48, 50, 53 ◦C) set in ascending
(heating) and descending (cooling) order between room temperature and 53 ◦C (Figure 3A,
solid lines). The corresponding temperatures at sample position were recorded with an
epoxy-passivated temperature sensor in DI-water simultaneously (Figure 3A, dashed lines).

The heating and cooling profiles at the sample position were determined for several
different steady ambient conditions at 16, 18, 21 and 23 ◦C, similarly. The graphs for 16, 18
and 23 ◦C ambient temperature can be found in the Supplementary Materials Figure S1,
they were additionally used for control performance estimations.

To determine the sample position temperature for any feedback controller setting, first
a “calibration” was performed. The relation of the temperature at the region of interest
(sample position) was plotted against the temperature at the more accessible LF surface
location, suited for controlling (Figure 2B). This way, a linear relationship of Ts (sample
temp.) and Tf (feedback temp.) could be ensured to easily select the necessary amplification
temperatures at the sample position.
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To initially estimate the reliability, the measured data at the recorded ambient tem-
peratures were used to test the PWM controller strategy (at the sample position, where
the amplification happens) in terms of heat up/cool down time constant, hysteresis and
temperature control stability.

The heat up and cool down time constants τh16–23 and τc16–23 were determined by
exponential fits for each step of the heating and cooling data, respectively (plots can be
found in Supplementary Figures S2 and S3). The temperature data were fitted from their
inflection point to the last point of their saturation by:

Th(t) = Kh·(1 − e
−(t−td)

τh ) (4)

The cooling data were fitted similarly with a decreasing exponential:

Tc(t) = K0 + Kc·e
−(t−td)

τc (5)

where for the heating process fit, Th(t) eventually approaches the asymptotic value Kh. For
the cooling process fit, Tc(t) eventually approaches the offset-term K0, while Kc indicates the
initial deviation from K0. The time td is the initial time and τh/c represents the time constant.

The average heating and cooling time constants were calculated to be τh16–23 = 137.13 s
and τc16–23 = 158.59 s, respectively. Therefore, for all characterized 1–7 ◦C step cases, 2/3 of
the steady state signal was reached in less than 2.3 min for heating and 2.7 min for cooling.

The hysteresis (here, the difference in temperature level for each step of the heating
process compared to the corresponding step of the cooling process) of both, the feedback
control temperature and the sample position temperature were determined for the same
datasets. The average hysteresis of the PWM controller at feedback temperature position
was calculated to be below the resolution limit of the digital DS18B20 temperature sensor
(<0.0625 ◦C) and therefore was not considered. The hysteresis of the temperature control at
the sample position averaged 0.29 ◦C (>4× resolution of DS18B20). Although temperature
control accuracy is crucial to ensure consistent amplification yield, RPA is generally feasible
within a relatively large temperature span (37–42 ◦C). We defined a requirement of a 1–2 ◦C
fluctuation at maximum, while in any case staying below 42 ◦C, which could denature RPA
components. The determined hysteresis at the sample position is therefore negligible.
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After reaching the desired steady temperature at the sample position, the importance of
control stability becomes obvious. Therefore, the temperature stability of each temperature
step was determined by means of its relative deviation from the mean over a 10 min time
period (Figure 4), equivalent to the time that is at least needed for a recombinase polymerase
amplification process [26,27].
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Figure 4. Relative standard deviations for steady state data at four different ambient temperatures.

The orange crosses indicate the % change from the set temperature control during all
heat up steps from Figure 3A, while the blue circles indicate the same during the steady
state phases of the cool down steps. The more intense colors mark higher temperature
levels. The relative standard deviation (Figure 4, y-axis) was investigated at the previously
described ambient conditions (Figure 4, x-axis). The green-colored region indicates the
range of errors within the region of temperatures that are most appropriate in an RPA
process, which is 37–42 ◦C, respectively.

From this plot, we obtain three important facts:

• As the temperature difference between the set controller value and the ambient in-
creases, the stability error tends to increase.

• Higher controlled temperatures generally yield larger stability errors.
• For all investigated constant ambient conditions, a stability error of maximally 0.3%

was observed.

Since we want to prove feasibility first, and optimize later, let us just consider the third
point for now. A marginal error of 0.3% would amount to 0.11 ◦C. Considering that the
error in the later selected RPA operating temperature region from 37–42 ◦C stays below a
0.1% error, the temperature instability during the amplification process will not influence
the efficiency of RPAs significantly.

3.2. RPA Amplification

To test the functionality in terms of amplifying DNA at the sample position, we per-
formed RPA in our temperature-controlled measurement head. The selection of RPA was
based on its rapid amplification time compared with others techniques like LAMP, RCA,
NASBA with similar sensitivity and specificity [18]. The typical incubation time of RPA
is between 20 and 30 min [28]. However, several studies showed the capability of RPA
to amplify DNA in less than 10 min [26,27]. We achieved rapid and efficient amplifica-
tion using our portable magnetic reader. By combining RPA with our previous work,
which demonstrated the ability to rapidly detect amplified DNA in less than 10 min [8],
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a PoC analysis system can be suggested that does not require any sample pre-treatment
in laboratories.

As a proof of concept, we performed RPA amplification using the positive control
template and oligo mix primers provided in the TwistAmp® Liquid Basic kit, which
is expected to produce an amplicon of 289 bp. The RPA reaction operates at constant
temperature, typically between 37 ◦C and 42 ◦C. This temperature range is based on the
optimal activity of the enzymes involved in the reaction such as recombinase enzymes,
polymerases and other components. In our study, we tested the amplification across a
range of temperatures, including 21 ◦C, 30 ◦C, 37 ◦C, 38 ◦C, 45 ◦C and 50 ◦C. The selection
of temperatures was chosen to investigate the amplification efficiency both within and
outside the optimal operating temperature range of RPA. This way, we could assess how the
variations of temperature controlled by PWM affect the performance of RPA amplification
from the biological perspective. The amplification was done both inside our temperature-
controlled measurement head and in a water bath as a reference method. In both cases, the
temperature ranged from 30 ◦C to 50 ◦C with an incubation time of 30 min.

Figure 5 shows the gel image of the RPA products amplified inside our measurement
head and in a water bath, controlled to different temperatures. From the gel image, we
confirmed the successful RPA positive control amplification as the expected amplicons
with a size of 289 bp were observed at 37 ◦C and 38 ◦C in both our measurement head
and water bath. When the amplification was tested outside the operating temperature of
RPA, such as at low temperatures (21 ◦C and 30 ◦C) and at high temperatures (45 ◦C and
50 ◦C), no bands were observed. This can be explained by the decreased activity of the
enzymes at lower temperatures and enzyme denaturation at higher temperatures, which
result in inefficient amplification and the absence of bands on the agarose gel. From this
result, we conclude that our implementation of a PWM controller regulated and controlled
the temperature of the measurement head sufficiently, as the bands were observed at the
optimal temperature range of RPA (37 ◦C and 38 ◦C), while no bands were observed at low
and high temperatures.
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To validate the temperature stability at the sample position in terms of the amplification
performance, we performed RPA at different incubation times ranging from 10 to 30 min.
Similar to previous investigations, the amplification was executed inside our measurement
head and in a water bath at 38 ◦C. After the amplification, the amplified products were
purified and loaded into the gel for 1 h. As shown in Figure 6, the band intensities for the
RPA products amplified inside the measurement head and water bath were similar at all
incubation times. This confirms that the stability of the temperature controlled by PWM
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inside the measurement head and the water bath control performance are alike in terms of
their potential for successful RPA.
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3.3. Linear Extrapolation Model

After evaluating the PWM control approach and proving the feasibility of RPA in
the MH unit, we want to examine the applicability of RPA in our portable magnetic
reader device.

Based on the previously presented results, the requirements for a successful RPA in
the measurement head were defined as:

1. The controlled temperature at the sample position cannot exceed 42 ◦C in any case, as
amplification components may denature.

2. The PWM controller reached a temperature stability error of less than 0.3% at the
sample position. With the successfully executed RPA presented in this section, this
stability is exceedingly sufficient.

3. A maximum control error of ±1 ◦C was stipulated at the sample position, as the RPA
worked well at 37 ◦C and 38 ◦C.

To first examine the applicability of RPA in the MH in a smaller temperature working
range (16–23 ◦C), a linear extrapolation model may suffice. The starting points for linear
extrapolation are the Ts/Tf -relation curves, exemplarily shown in Figure 3B. Similarly, these
curves were recorded for the heating and cooling process of other previously investigated
ambient temperatures (Figure 7).

While the slopes of the linear regression of the Ts/Tf -relation curves only change
marginally for all investigated ambient conditions (see equations in Figure 7), the Ts-axis
intercept seems to linearly depend on the ambient temperature level. For this model, we
assume that this linear dependency persists for arbitrary but steady ambient temperature
values. Therefore, linear extrapolation can be performed, estimating Ts/Tf -relation curves
for different steady ambient temperature levels. Due to the negligibly small slope changes,
we averaged the slopes of heating and cooling curves, respectively. This slope can be
kept for all predicted Ts/Tf -relation curves. The underlying linear relation between the
y-axis intercept and ambient temperature can be described for the heating process by
Ts,intercept,h = 0.2Tf ,h − 1.85 and for the cooling process by Ts,intercept,c = 0.15Tf ,c − 0.08,
which was obtained by mapping the intercept value versus the ambient condition and
fitting a linear function.



Sensors 2024, 24, 4478 11 of 17

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18 
 

 

1. The controlled temperature at the sample position cannot exceed 42 °C in any case, 
as amplification components may denature. 

2. The PWM controller reached a temperature stability error of less than 0.3% at the 
sample position. With the successfully executed RPA presented in this section, this 
stability is exceedingly sufficient. 

3. A maximum control error of ±1 °C was stipulated at the sample position, as the RPA 
worked well at 37 °C and 38 °C. 
To first examine the applicability of RPA in the MH in a smaller temperature working 

range (16–23 °C), a linear extrapolation model may suffice. The starting points for linear 
extrapolation are the 𝑇𝑇𝑠𝑠 /𝑇𝑇𝑓𝑓 -relation curves, exemplarily shown in Figure 3B. Similarly, 
these curves were recorded for the heating and cooling process of other previously 
investigated ambient temperatures (Figure 7). 

 
Figure 7. Linear heat-up and cool-down relationship of 𝑇𝑇𝑠𝑠 and 𝑇𝑇𝑓𝑓 at 16, 18, 21 and 23 °C ambient 
temperature. And the same linear relation zoomed in to the region of RPA operating temperatures 
with linear model-estimated calibration curves for 10, 13, 26 and 29 °C ambient temperature. 

While the slopes of the linear regression of the 𝑇𝑇𝑠𝑠 /𝑇𝑇𝑓𝑓 -relation curves only change 
marginally for all investigated ambient conditions (see equations in Figure 7), the 𝑇𝑇𝑠𝑠-axis 
intercept seems to linearly depend on the ambient temperature level. For this model, we 
assume that this linear dependency persists for arbitrary but steady ambient temperature 
values. Therefore, linear extrapolation can be performed, estimating 𝑇𝑇𝑠𝑠/𝑇𝑇𝑓𝑓-relation curves 
for different steady ambient temperature levels. Due to the negligibly small slope changes, 
we averaged the slopes of heating and cooling curves, respectively. This slope can be kept 
for all predicted 𝑇𝑇𝑠𝑠/𝑇𝑇𝑓𝑓-relation curves. The underlying linear relation between the y-axis 
intercept and ambient temperature can be described for the heating process by 
𝑇𝑇𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ = 0.2𝑇𝑇𝑓𝑓,ℎ − 1.85 and for the cooling process by 𝑇𝑇𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑐𝑐 = 0.15𝑇𝑇𝑓𝑓,𝑐𝑐 − 0.08, 
which was obtained by mapping the intercept value versus the ambient condition and 
fitting a linear function. 

To test the extrapolation approach, datasets for 16, 18 and 21 °C were considered and 
the “calibration curve” data for 23 °C ambient temperature was estimated using the 
model. Subsequently, we compared the data estimated by the model to the measured data 
points. The real intercept of the measured data was 2.74, while the predicted intercept 
with the linear extrapolation model was 3.12. For this data sample, the measured data 
matches the predicted data with an R2 value of 0.96 and a standard error of estimate (SEE) 
of 0.79 °C. With the requirements for a successful RPA in the MH defined earlier, the 
estimation error in our model should be <0.89 °C, taking into account the maximum 
control fluctuation of 0.11 °C at the sample position. Hence, these statistical metrics 

25 30 35 40 45 50
Tf , Feedback Temperature (°C)

30

35

40

45

50

55

T s , 
Sa

m
pl

e T
em

pe
ra

tu
re

 (°
C)

37 38 39 40 41 42 43 44 45
Tf , Feedback Temperature (°C)

35

36

37

38

39

40

41

42

T s , 
Sa

m
pl

e T
em

pe
ra

tu
re

 (°
C)

Heating Extrapolation
Cooling Extrapolation

heating 16°C: y = 0.89x + 1.38
cooling 16°C: y = 0.87x + 2.36
heating 18°C: y = 0.89x + 1.84
cooling 18°C: y = 0.87x + 2.60
heating 21°C: y = 0.88x + 2.63
cooling 21°C: y = 0.87x + 3.23
heating 23°C: y = 0.88x + 2.74
cooling 23°C: y = 0.87x + 3.35

Figure 7. Linear heat-up and cool-down relationship of Ts and Tf at 16, 18, 21 and 23 ◦C ambient
temperature. And the same linear relation zoomed in to the region of RPA operating temperatures
with linear model-estimated calibration curves for 10, 13, 26 and 29 ◦C ambient temperature.

To test the extrapolation approach, datasets for 16, 18 and 21 ◦C were considered and
the “calibration curve” data for 23 ◦C ambient temperature was estimated using the model.
Subsequently, we compared the data estimated by the model to the measured data points.
The real intercept of the measured data was 2.74, while the predicted intercept with the
linear extrapolation model was 3.12. For this data sample, the measured data matches the
predicted data with an R2 value of 0.96 and a standard error of estimate (SEE) of 0.79 ◦C.
With the requirements for a successful RPA in the MH defined earlier, the estimation error
in our model should be <0.89 ◦C, taking into account the maximum control fluctuation of
0.11 ◦C at the sample position. Hence, these statistical metrics confirm that an accurate
enough prediction is indeed possible relative to the measured data in the proposed steady
state ambient temperature range.

Therefore, combining the PWM approach and FMMD technology with this linear
regression model provides a simple, yet functional way to control the temperature for
sample pre-processing. Moreover, the magnetization response of a magnetic nanoparticle-
based immunoassay or DNA assay can potentially even be recorded simultaneously to
temperature regulation, during the “on-time” of the duty cycle.

While PWM and the linear regression model already meet all necessary requirements
for RPA in the investigated environment, the main limitation of the model is its steady state
assumption for ambient temperature conditions around room temperature. Estimating
error margins for predicted calibration curves turns out statistically insignificant without
testing the control approach in many different environmental conditions first. Additionally,
conclusions 1 and 2 from Figure 4 indicate that, while stability errors are small for the
presented data of the temperature at the sample position, they still depend on the strength
of the ambient temperature level-shift.

3.4. Thermal Lumped Parameter Model

To overcome the steady state assumption of the extrapolation model, lumped param-
eter model (LPM) systems were identified and validated for measured temperature data
Tf ,meas at the LF-coil surface and for measured data Ts,meas at the sample position. Using the
LPM approach, we can evaluate the transient thermal behavior of our system for arbitrary
ambient temperature inputs at the points of interest. By connecting both models, control
performance can also be estimated at the sample position, despite the fact that the feedback
temperature is tracked at the LF-coil surface.

Of course, in reality the MH underlies a spatially varying temperature distribution
that changes radially throughout its cylindrical shape. The zero-dimensional assumption
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of the lumped parameter model considers solely the transient temperature behavior. In
other words, this model structure is limited to predicting a single point temperature.
However, since the MH geometrically obeys the same physics laws everywhere, with the
only difference being material constants or different transport delays, minor adjustments in
the model can be used for the prediction of different single point temperatures in the MH,
like Tf ,pred and Ts,pred.

The LPM interconnects the temperature output of the system Tf (LF-coil temperature)
or Ts (sample position temperature in water), respectively, to the average dissipated power
from the LF-coil (PLF) and the ambient temperature (TAMB) through an effective thermal
capacitance term 1

Cvol
. A feedback loop of the output temperature to the TAMB input

shows the cooling/heating dependence on the temperature difference of the MH and
its surroundings. To explain this, let us first introduce the system represented as the
underlying differential equation:

dT f (t)
dt

+ p∗c
KAMB
Cvol

Tf (t) = p∗h
KLF
Cvol

PLF(t) + p∗h
KLF
Cvol

TAmb(t) (6)

The term Cvol ·
dTf (t)

dt may remind one of the energy storage term in the heat conduction
equation without the spatial dependencies of thermal diffusivity—density and thermal
conductivity. It is the core piece that allows transient analysis. KLF, KAMB, Cvol are the main
parameters in the model. KLF, KAMB scale the influence of the system inputs PLF and TAMB
on the MH’s thermal output behavior. Generally, the right side of the equation is a function,
describing the inputs of the system, equivalent to the standard heat conduction description.

Based on the heat conduction equation supplemented by the assumptions defined
in Section 2.5.1, the model structure was iteratively determined. A more intuitive way to
depict this system and a typical approach in control theory is the illustration as a block
diagram. Each part in the block diagram represents either an input, an output, a constant or
a Laplace-transformed portion of the underlying differential equation that determines the
systems dynamics. Figure 8 shows the block diagram that represents the thermal behavior
of the MH in time.
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In this block diagram, s is called the complex frequency variable (or Laplace parameter)
resulting from the Laplace transform, representing time derivatives at the order of the
potency of s. The linearity of each transfer function in this first model structure allows the
scaling of the input measures for achieving proportional changes in the model output. As
can be seen from the differential form of the model, this is fundamentally a linear first order
multi-input, single output (MISO) system.

Two modifications will be made to this general model structure before we can identify
and compare the Tf and Ts output confidently.

1. It was reported that heat conduction can be more accurately described by a non-integer
order process [29]. So, we attempted integer-order polynomial approximations (Padé
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approximations) to model the non-integer order portion of the problem and enhance
the accuracy of the model output compared to measured data. The higher the order
of approximation, the more accurately the model output reflects the measured data.
In one of the present cases, for example, a fourth order Padé approximation improved
model accuracy in terms of R2 value by ~13% over a second order Padé approximation.
This improvement diminishes strongly with higher approximation orders. The trade-
off involves that a higher number of parameters in the model is needed, and the
model requires higher computational parameter estimation effort and therefore more
time [30]. Exemplary second order Padé approximations follow the form:

p∗i =
a2s2 + a1s + a0

b2s2 + b1s + 1
(7)

where p∗i denotes the Padé block, with i being representative of the approximation purpose
(heating or cooling influence, respectively) and a0 − b2 are constants. We decided to use
two blocks of second order Padé approximations to “smoothen” the effect of each of our
inputs PLF and TAMB to the output Ts,pred or Tf ,pred. The reason for using two blocks of
second order approximations instead of one block of fourth order was simply that the
computational effort is substantially reduced for two separate blocks in MATLAB.

2. In order to extend the described model structure to be usable as a sample position
model instead of determining solely the LF-coil temperature, a transport delay term
was multiplied with the system, using a delay term block in MATLAB Simulink.
Typically, transport delays occur as nonlinear elements in a first instance. However,
the sample position temperature model is consequentially time delayed to the LF-coil
temperature model, and hence is nonlinear; both models remain linear relative to the
TAMB and PLF inputs. The scaled transport delayed temperature output at the sample
position can therefore be considered as an output on the LF-coil surface. Linearization
of the delay time, which could classically be done by Padé approximations as well,
can be omitted for now, which reduces the number of parameters in the model and
makes simulations faster.

In the course of system identification, KLF, KAMB, Cvol and the Padé approximation pa-
rameters were determined solving a least squares problem (7) and were collected in Table 1.
Using the identified parameters, the models were validated with additional indepen-
dently recorded datasets at sample and feedback position, respectively. The corresponding
measured and simulated system inputs and outputs are depicted in Figures S4–S7 in the
Supplementary Materials.

Table 1. Estimated model parameters for LPM at feedback and sample position.

Model Parameters LPM LF-Coil LPM Sample Pos.

KLF 0.302 0.317
KAMB 0.052 0.046
Cvol 36.266 45.572

a0 − a5
[1.103, 1.279, 0.001, 1.145,

1.139, 1.000]
[1.142, 1.305, 0.001, 1.048,

1.165, 1.000]
b1, b2, b4, b5 [0.737, 1.011, 0.877, 0.980] [0.730, 1.011, 0.870, 0.980]

c0 − c5
[0.892, 0.999, 0.999, 0.839,

0.996, 1.018]
[0.806, 0.998, 0.999, 0.864,

0.995, 1.018]
d1, d2, d4, d5 [1.007, 1.007, 0.987, 0.997] [1.010, 1.007, 0.988, 0.997]

To evaluate the model fit accuracy, selected statistical metrics were introduced in
Section 2.5.2 and can be seen in Table 2 for the various identification and verification
datasets for the feedback model with the output Tf ,pred and the sample position model with
the output Ts,pred.
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Table 2. Statistical measures to evaluate the simulation quality based on measured data.

Metrics Tf,pred Identification/
Validation

Ts,pred Identification/
Validation

NRMSE 0.049/0.075 0.047/0.066
%¯Fit based on R2

adj 96.91%/96.04% 95.28%/93.45%
SEE 1.523/1.600 1.693/2.257

Overall, the evaluation indicates very good model performance, with small error
margins. Due to the relatively slow nature of temperature change, the model is able to
capture the essential thermal dynamics of the MH sensor unit.

The long transport delay time between the LF-coil and the sample position was
estimated to be τd = 48.27 s. It was determined at what time measured temperature data
first exceeded 3× the standard deviation of a linear regression line fitted to the initial linear
data of the identification and validation datasets. To illustrate this more clearly, an example
of a delay-time estimation based on the validation dataset of the sample position model
can be found in Figure 9.
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regression line at three times the standard deviation of the initial piece of the measured dataset. The
green curve indicates the average input power to the system that causes the temperature output
behavior (blue curve).

Finally, the last step was to connect the model structures of the LPM for Tf ,pred and
Ts,pred by using the controlled PLF output of any controller (here, PWM is an example),
generated based on the temperature feedback from the LF-coil surface and feed it to both
LPMs as the controllable input (see Figure 10). The TAmb input is also similar in this case
for both models.

Doing this, the connected model presents the simulated control output for both
the feedback position temperature Tf ,pred and the sample position temperature Ts,pred
(Figure 11), exemplarily for 38 ◦C, a typical RPA operating temperature. The initial con-
dition fed to the integrator of the models need to be distinct in this case—the LPM for
feedback position uses the initial value of the feedback temperature and the LPM for sample
position uses the temperature at the sample position at the start of the measurement. As
was observed in the measured data, the temperature control at the sample position is a de-
layed and scaled version of the temperature at the LF-coil surface. By introducing a simple
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scaling factor KS to the input of the sample position model, we are able to predict these
temperature curves at different MH positions for arbitrary ambient inputs. We propose
that this enables the selection of sensible control approaches, depending on the severeness
of ambient conditions in the field, and to further identify physical limitations for biological
use cases.
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the desired control temperature and KS a scaling factor for the control action at the sample position.
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Figure 11. Ambient temperature input profile (top), duty cycle of the average power input (mid) and
controlled temperature at the feedback position (blue) and sample position (purple) (bottom).

4. Conclusions

The feasibility of performing recombinase polymerase amplification in the measure-
ment head of the magnetic reader device prior to FMMD signal acquisition at continuously
constant ambient conditions was presented using a PWM approach with the inherently
generated heat from the LF excitation coil of the system. This simple implementation has
already proven to be a valuable addition to the mobile functionality of the FMMD device
for the RPA-based sample preparation.
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A linear relation of the sample temperature to the temperature at the position of the
feedback sensor determined the necessary control temperature to set. Despite the sample
opening in the MH, a level-shift in the ambient conditions leads to a shift of the Ts/Tf-
relation curve towards the new ambient temperature state (Figure 7). While the feedback
temperature Tf stayed constant (as it was embedded within the MH and isolated from the
environment), the sample position temperature shifted slightly for temperatures between
16 and 23 ◦C. To investigate the reliability of the PWM approach at ambient conditions
different from the tested ones, a linear regression model for prediction of the steady state
and an LPM for prediction of the transient behavior of the temperature at the sample
position for arbitrary ambient condition inputs was suggested. The latter does not only
help in investigating thermal behavior of the MH at the sample position for arbitrary
inputs, it is also a promising tool for future technological advancements. It may help in
minimizing resistance fluctuations that have an effect on the excitation signal amplitudes
or in determining the thermal capacitance of the entire MH for 3D analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24144478/s1, Figure S1: Recorded characterization data for
feedback temperature control, sample position temperature and ambient (laboratory) temperature of
16, 18 and 23 ◦C; Figure S2: Exponential fit and time constant estimation of the standard deviation
cured heating steps in the temperature characterization data (21 ◦C) from Figure 3; Figure S3:
Exponential fit and time constant estimation of the standard deviation cured cooling steps in the
temperature characterization data (21 ◦C) from Figure 3; Figure S4: System in- and outputs used as
model structure identification data for the lumped parameter model that predicts temperatures at
the feedback sensor position; Figure S5: System in -and outputs used as model structure validation
data for the lumped parameter model that predicts temperatures at the feedback sensor position;
Figure S6: System in- and outputs used as model structure identification data for the lumped
parameter model that predicts temperatures at the sample position; Figure S7: System in- and output
used as model structure validation data for the lumped parameter model that predicts temperatures
at the sample position; Figure S8: Delay time estimation for system identification dataset. The delay
time is the difference of the rising edge of the input pulse and the first significant change in the
output temperature.
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